3.750 \(\int \frac{x^{5/2}}{(a+c x^4)^2} \, dx\)

Optimal. Leaf size=308 \[ -\frac{\log \left (-\sqrt{2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt{x}+\sqrt [4]{-a}+\sqrt [4]{c} x\right )}{32 \sqrt{2} (-a)^{9/8} c^{7/8}}+\frac{\log \left (\sqrt{2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt{x}+\sqrt [4]{-a}+\sqrt [4]{c} x\right )}{32 \sqrt{2} (-a)^{9/8} c^{7/8}}+\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 \sqrt{2} (-a)^{9/8} c^{7/8}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}+1\right )}{16 \sqrt{2} (-a)^{9/8} c^{7/8}}-\frac{\tan ^{-1}\left (\frac{\sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac{x^{7/2}}{4 a \left (a+c x^4\right )} \]

[Out]

x^(7/2)/(4*a*(a + c*x^4)) + ArcTan[1 - (Sqrt[2]*c^(1/8)*Sqrt[x])/(-a)^(1/8)]/(16*Sqrt[2]*(-a)^(9/8)*c^(7/8)) -
 ArcTan[1 + (Sqrt[2]*c^(1/8)*Sqrt[x])/(-a)^(1/8)]/(16*Sqrt[2]*(-a)^(9/8)*c^(7/8)) - ArcTan[(c^(1/8)*Sqrt[x])/(
-a)^(1/8)]/(16*(-a)^(9/8)*c^(7/8)) + ArcTanh[(c^(1/8)*Sqrt[x])/(-a)^(1/8)]/(16*(-a)^(9/8)*c^(7/8)) - Log[(-a)^
(1/4) - Sqrt[2]*(-a)^(1/8)*c^(1/8)*Sqrt[x] + c^(1/4)*x]/(32*Sqrt[2]*(-a)^(9/8)*c^(7/8)) + Log[(-a)^(1/4) + Sqr
t[2]*(-a)^(1/8)*c^(1/8)*Sqrt[x] + c^(1/4)*x]/(32*Sqrt[2]*(-a)^(9/8)*c^(7/8))

________________________________________________________________________________________

Rubi [A]  time = 0.251169, antiderivative size = 308, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 12, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.8, Rules used = {290, 329, 301, 297, 1162, 617, 204, 1165, 628, 298, 205, 208} \[ -\frac{\log \left (-\sqrt{2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt{x}+\sqrt [4]{-a}+\sqrt [4]{c} x\right )}{32 \sqrt{2} (-a)^{9/8} c^{7/8}}+\frac{\log \left (\sqrt{2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt{x}+\sqrt [4]{-a}+\sqrt [4]{c} x\right )}{32 \sqrt{2} (-a)^{9/8} c^{7/8}}+\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 \sqrt{2} (-a)^{9/8} c^{7/8}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}+1\right )}{16 \sqrt{2} (-a)^{9/8} c^{7/8}}-\frac{\tan ^{-1}\left (\frac{\sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac{x^{7/2}}{4 a \left (a+c x^4\right )} \]

Antiderivative was successfully verified.

[In]

Int[x^(5/2)/(a + c*x^4)^2,x]

[Out]

x^(7/2)/(4*a*(a + c*x^4)) + ArcTan[1 - (Sqrt[2]*c^(1/8)*Sqrt[x])/(-a)^(1/8)]/(16*Sqrt[2]*(-a)^(9/8)*c^(7/8)) -
 ArcTan[1 + (Sqrt[2]*c^(1/8)*Sqrt[x])/(-a)^(1/8)]/(16*Sqrt[2]*(-a)^(9/8)*c^(7/8)) - ArcTan[(c^(1/8)*Sqrt[x])/(
-a)^(1/8)]/(16*(-a)^(9/8)*c^(7/8)) + ArcTanh[(c^(1/8)*Sqrt[x])/(-a)^(1/8)]/(16*(-a)^(9/8)*c^(7/8)) - Log[(-a)^
(1/4) - Sqrt[2]*(-a)^(1/8)*c^(1/8)*Sqrt[x] + c^(1/4)*x]/(32*Sqrt[2]*(-a)^(9/8)*c^(7/8)) + Log[(-a)^(1/4) + Sqr
t[2]*(-a)^(1/8)*c^(1/8)*Sqrt[x] + c^(1/4)*x]/(32*Sqrt[2]*(-a)^(9/8)*c^(7/8))

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 301

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(
a/b), 2]]}, Dist[s/(2*b), Int[x^(m - n/2)/(r + s*x^(n/2)), x], x] - Dist[s/(2*b), Int[x^(m - n/2)/(r - s*x^(n/
2)), x], x]] /; FreeQ[{a, b}, x] && IGtQ[n/4, 0] && IGtQ[m, 0] && LeQ[n/2, m] && LtQ[m, n] &&  !GtQ[a/b, 0]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^{5/2}}{\left (a+c x^4\right )^2} \, dx &=\frac{x^{7/2}}{4 a \left (a+c x^4\right )}+\frac{\int \frac{x^{5/2}}{a+c x^4} \, dx}{8 a}\\ &=\frac{x^{7/2}}{4 a \left (a+c x^4\right )}+\frac{\operatorname{Subst}\left (\int \frac{x^6}{a+c x^8} \, dx,x,\sqrt{x}\right )}{4 a}\\ &=\frac{x^{7/2}}{4 a \left (a+c x^4\right )}-\frac{\operatorname{Subst}\left (\int \frac{x^2}{\sqrt{-a}-\sqrt{c} x^4} \, dx,x,\sqrt{x}\right )}{8 a \sqrt{c}}+\frac{\operatorname{Subst}\left (\int \frac{x^2}{\sqrt{-a}+\sqrt{c} x^4} \, dx,x,\sqrt{x}\right )}{8 a \sqrt{c}}\\ &=\frac{x^{7/2}}{4 a \left (a+c x^4\right )}-\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt [4]{-a}-\sqrt [4]{c} x^2} \, dx,x,\sqrt{x}\right )}{16 a c^{3/4}}+\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt [4]{-a}+\sqrt [4]{c} x^2} \, dx,x,\sqrt{x}\right )}{16 a c^{3/4}}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt [4]{-a}-\sqrt [4]{c} x^2}{\sqrt{-a}+\sqrt{c} x^4} \, dx,x,\sqrt{x}\right )}{16 a c^{3/4}}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt [4]{-a}+\sqrt [4]{c} x^2}{\sqrt{-a}+\sqrt{c} x^4} \, dx,x,\sqrt{x}\right )}{16 a c^{3/4}}\\ &=\frac{x^{7/2}}{4 a \left (a+c x^4\right )}-\frac{\tan ^{-1}\left (\frac{\sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac{\operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt [4]{-a}}{\sqrt [4]{c}}-\frac{\sqrt{2} \sqrt [8]{-a} x}{\sqrt [8]{c}}+x^2} \, dx,x,\sqrt{x}\right )}{32 a c}+\frac{\operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt [4]{-a}}{\sqrt [4]{c}}+\frac{\sqrt{2} \sqrt [8]{-a} x}{\sqrt [8]{c}}+x^2} \, dx,x,\sqrt{x}\right )}{32 a c}-\frac{\operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [8]{-a}}{\sqrt [8]{c}}+2 x}{-\frac{\sqrt [4]{-a}}{\sqrt [4]{c}}-\frac{\sqrt{2} \sqrt [8]{-a} x}{\sqrt [8]{c}}-x^2} \, dx,x,\sqrt{x}\right )}{32 \sqrt{2} (-a)^{9/8} c^{7/8}}-\frac{\operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [8]{-a}}{\sqrt [8]{c}}-2 x}{-\frac{\sqrt [4]{-a}}{\sqrt [4]{c}}+\frac{\sqrt{2} \sqrt [8]{-a} x}{\sqrt [8]{c}}-x^2} \, dx,x,\sqrt{x}\right )}{32 \sqrt{2} (-a)^{9/8} c^{7/8}}\\ &=\frac{x^{7/2}}{4 a \left (a+c x^4\right )}-\frac{\tan ^{-1}\left (\frac{\sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}-\frac{\log \left (\sqrt [4]{-a}-\sqrt{2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt{x}+\sqrt [4]{c} x\right )}{32 \sqrt{2} (-a)^{9/8} c^{7/8}}+\frac{\log \left (\sqrt [4]{-a}+\sqrt{2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt{x}+\sqrt [4]{c} x\right )}{32 \sqrt{2} (-a)^{9/8} c^{7/8}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 \sqrt{2} (-a)^{9/8} c^{7/8}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 \sqrt{2} (-a)^{9/8} c^{7/8}}\\ &=\frac{x^{7/2}}{4 a \left (a+c x^4\right )}+\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 \sqrt{2} (-a)^{9/8} c^{7/8}}-\frac{\tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 \sqrt{2} (-a)^{9/8} c^{7/8}}-\frac{\tan ^{-1}\left (\frac{\sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [8]{c} \sqrt{x}}{\sqrt [8]{-a}}\right )}{16 (-a)^{9/8} c^{7/8}}-\frac{\log \left (\sqrt [4]{-a}-\sqrt{2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt{x}+\sqrt [4]{c} x\right )}{32 \sqrt{2} (-a)^{9/8} c^{7/8}}+\frac{\log \left (\sqrt [4]{-a}+\sqrt{2} \sqrt [8]{-a} \sqrt [8]{c} \sqrt{x}+\sqrt [4]{c} x\right )}{32 \sqrt{2} (-a)^{9/8} c^{7/8}}\\ \end{align*}

Mathematica [C]  time = 0.005518, size = 29, normalized size = 0.09 \[ \frac{2 x^{7/2} \, _2F_1\left (\frac{7}{8},2;\frac{15}{8};-\frac{c x^4}{a}\right )}{7 a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(5/2)/(a + c*x^4)^2,x]

[Out]

(2*x^(7/2)*Hypergeometric2F1[7/8, 2, 15/8, -((c*x^4)/a)])/(7*a^2)

________________________________________________________________________________________

Maple [C]  time = 0.012, size = 50, normalized size = 0.2 \begin{align*}{\frac{1}{4\,a \left ( c{x}^{4}+a \right ) }{x}^{{\frac{7}{2}}}}+{\frac{1}{32\,ac}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+a \right ) }{\frac{1}{{\it \_R}}\ln \left ( \sqrt{x}-{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)/(c*x^4+a)^2,x)

[Out]

1/4*x^(7/2)/a/(c*x^4+a)+1/32/a/c*sum(1/_R*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{x^{\frac{7}{2}}}{4 \,{\left (a c x^{4} + a^{2}\right )}} + \int \frac{x^{\frac{5}{2}}}{8 \,{\left (a c x^{4} + a^{2}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(c*x^4+a)^2,x, algorithm="maxima")

[Out]

1/4*x^(7/2)/(a*c*x^4 + a^2) + integrate(1/8*x^(5/2)/(a*c*x^4 + a^2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.76723, size = 1440, normalized size = 4.68 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(c*x^4+a)^2,x, algorithm="fricas")

[Out]

1/64*(16*x^(7/2) - 4*sqrt(2)*(a*c*x^4 + a^2)*(-1/(a^9*c^7))^(1/8)*arctan(sqrt(2)*sqrt(sqrt(2)*a^8*c^6*sqrt(x)*
(-1/(a^9*c^7))^(7/8) - a^7*c^5*(-1/(a^9*c^7))^(3/4) + x)*a*c*(-1/(a^9*c^7))^(1/8) - sqrt(2)*a*c*sqrt(x)*(-1/(a
^9*c^7))^(1/8) + 1) - 4*sqrt(2)*(a*c*x^4 + a^2)*(-1/(a^9*c^7))^(1/8)*arctan(sqrt(2)*sqrt(-sqrt(2)*a^8*c^6*sqrt
(x)*(-1/(a^9*c^7))^(7/8) - a^7*c^5*(-1/(a^9*c^7))^(3/4) + x)*a*c*(-1/(a^9*c^7))^(1/8) - sqrt(2)*a*c*sqrt(x)*(-
1/(a^9*c^7))^(1/8) - 1) + sqrt(2)*(a*c*x^4 + a^2)*(-1/(a^9*c^7))^(1/8)*log(sqrt(2)*a^8*c^6*sqrt(x)*(-1/(a^9*c^
7))^(7/8) - a^7*c^5*(-1/(a^9*c^7))^(3/4) + x) - sqrt(2)*(a*c*x^4 + a^2)*(-1/(a^9*c^7))^(1/8)*log(-sqrt(2)*a^8*
c^6*sqrt(x)*(-1/(a^9*c^7))^(7/8) - a^7*c^5*(-1/(a^9*c^7))^(3/4) + x) - 8*(a*c*x^4 + a^2)*(-1/(a^9*c^7))^(1/8)*
arctan(sqrt(-a^7*c^5*(-1/(a^9*c^7))^(3/4) + x)*a*c*(-1/(a^9*c^7))^(1/8) - a*c*sqrt(x)*(-1/(a^9*c^7))^(1/8)) +
2*(a*c*x^4 + a^2)*(-1/(a^9*c^7))^(1/8)*log(a^8*c^6*(-1/(a^9*c^7))^(7/8) + sqrt(x)) - 2*(a*c*x^4 + a^2)*(-1/(a^
9*c^7))^(1/8)*log(-a^8*c^6*(-1/(a^9*c^7))^(7/8) + sqrt(x)))/(a*c*x^4 + a^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(5/2)/(c*x**4+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.46936, size = 613, normalized size = 1.99 \begin{align*} \frac{x^{\frac{7}{2}}}{4 \,{\left (c x^{4} + a\right )} a} + \frac{\sqrt{\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{7}{8}} \arctan \left (\frac{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{1}{8}} + 2 \, \sqrt{x}}{\sqrt{\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{1}{8}}}\right )}{32 \, a^{2}} + \frac{\sqrt{\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{7}{8}} \arctan \left (-\frac{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{1}{8}} - 2 \, \sqrt{x}}{\sqrt{\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{1}{8}}}\right )}{32 \, a^{2}} + \frac{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{7}{8}} \arctan \left (\frac{\sqrt{\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{1}{8}} + 2 \, \sqrt{x}}{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{1}{8}}}\right )}{32 \, a^{2}} + \frac{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{7}{8}} \arctan \left (-\frac{\sqrt{\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{1}{8}} - 2 \, \sqrt{x}}{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{1}{8}}}\right )}{32 \, a^{2}} - \frac{\sqrt{\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{7}{8}} \log \left (\sqrt{x} \sqrt{\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{1}{8}} + x + \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}{64 \, a^{2}} + \frac{\sqrt{\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{7}{8}} \log \left (-\sqrt{x} \sqrt{\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{1}{8}} + x + \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}{64 \, a^{2}} - \frac{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{7}{8}} \log \left (\sqrt{x} \sqrt{-\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{1}{8}} + x + \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}{64 \, a^{2}} + \frac{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{7}{8}} \log \left (-\sqrt{x} \sqrt{-\sqrt{2} + 2} \left (\frac{a}{c}\right )^{\frac{1}{8}} + x + \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}{64 \, a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(c*x^4+a)^2,x, algorithm="giac")

[Out]

1/4*x^(7/2)/((c*x^4 + a)*a) + 1/32*sqrt(sqrt(2) + 2)*(a/c)^(7/8)*arctan((sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + 2*sq
rt(x))/(sqrt(sqrt(2) + 2)*(a/c)^(1/8)))/a^2 + 1/32*sqrt(sqrt(2) + 2)*(a/c)^(7/8)*arctan(-(sqrt(-sqrt(2) + 2)*(
a/c)^(1/8) - 2*sqrt(x))/(sqrt(sqrt(2) + 2)*(a/c)^(1/8)))/a^2 + 1/32*sqrt(-sqrt(2) + 2)*(a/c)^(7/8)*arctan((sqr
t(sqrt(2) + 2)*(a/c)^(1/8) + 2*sqrt(x))/(sqrt(-sqrt(2) + 2)*(a/c)^(1/8)))/a^2 + 1/32*sqrt(-sqrt(2) + 2)*(a/c)^
(7/8)*arctan(-(sqrt(sqrt(2) + 2)*(a/c)^(1/8) - 2*sqrt(x))/(sqrt(-sqrt(2) + 2)*(a/c)^(1/8)))/a^2 - 1/64*sqrt(sq
rt(2) + 2)*(a/c)^(7/8)*log(sqrt(x)*sqrt(sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/a^2 + 1/64*sqrt(sqrt(2) +
2)*(a/c)^(7/8)*log(-sqrt(x)*sqrt(sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/a^2 - 1/64*sqrt(-sqrt(2) + 2)*(a/
c)^(7/8)*log(sqrt(x)*sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/a^2 + 1/64*sqrt(-sqrt(2) + 2)*(a/c)^(7/
8)*log(-sqrt(x)*sqrt(-sqrt(2) + 2)*(a/c)^(1/8) + x + (a/c)^(1/4))/a^2